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Abstract
To probe the interplay of different mechanisms for criticality, we study the
dynamic failure model, each element of which is allowed to break or to
be healed with given conditional probabilities. Under an external load the
system evolves to the stationary state, which may exhibit breakages of various
sizes. In addition, as the healing parameter is varied, the system undergoes a
discontinuous transition between the functioning state and the failed one. In the
regimes with appropriate amounts of healing and fluctuations of the surviving
fraction, scale invariance in spatial and temporal correlations is observed,
manifested by the power spectrum of the breakage rate of elements and by
the cluster size distribution of broken elements.

PACS numbers: 89.75.Da, 87.18.Bb, 05.65.+b

Many phenomena in nature exhibit power-law behavior in spatial and/or temporal correlations.
Well-known examples include the frequency-size distribution of earthquakes known as the
Gutenberg–Richter law [1], various distributions in biological systems [2], degree distributions
in complex networks [3] and time series in several systems [4]. The concept of self-organized
criticality (SOC), proposed with the help of a sandpile model [5], attempts to provide a
theoretical explanation of power-law scaling behavior from a unified viewpoint. According to
the idea of SOC, the system is brought into the critical state through the interplay of the input
from outside and dissipation present in the system. As a consequence, small perturbations
give rise to avalanches of all sizes, thus resulting in power-law distributions. Note that the
steady input from outside, which acts as ‘healing’ in the system, plays a key role in attaining
criticality in SOC. While this idea has been applied to a variety of phenomena [6], there also
exists cases of power-law scaling not belonging to this category: among typical examples are
breakdown phenomena involving discontinuous phase transitions, which contrasts with the
SOC mechanism [7].
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In understanding the general mechanism of power-law scaling, it is thus desirable to
compare the contrasting frameworks and to probe the precise role of healing in criticality. For
this purpose, this paper studies a model system in which both frameworks are present, namely,
a dynamical system exhibiting stationary states with power-law behavior and transitions
between the stationary states as the system parameters vary. To be specific, we adopt the
recently proposed dynamic failure model [8], which incorporates healing effects into the
fiber bundle models for breakdown in heterogeneous materials [9–11]. The dynamic failure
model, proposed to describe, e.g., the evolution of dysfunction and possible failure in a living
organism, resulting from the interplay of cell damage/death and cure/birth, has been observed
to exhibit many desirable properties as to the time evolution to the stationary state and the
lifetime under applied load [8, 12]. For a given healing parameter, the system tends to resist
external load for a rather long time, followed by sudden failure with some fraction of elements
still surviving, if the load exceeds a transition value depending on the healing parameter.
Otherwise there is no breakdown, indicating that the system-wide failure is governed by the
interplay of healing and external load. Furthermore, in some range of the healing parameter,
there exist two stable stationary states, between which the system undergoes a discontinuous
phase transition. In consequence, as the healing parameter is varied, there arises a hysteresis.
We carry out Monte Carlo (MC) simulations of the system with local load sharing (LLS) to
observe that, for appropriate ranges of the system parameters, size distributions of clusters of
broken elements as well as power spectra of the breakage rate of elements exhibit power-law
behavior. Such critical behavior of spatial and temporal correlations apparently arise from the
interplay of discontinuous transitions as well as SOC.

We consider a system consisting of N elements under external load F. Each element has
its own threshold and endures the load below the threshold. The element may become broken,
however, if the threshold is exceeded. We assign ‘spin’ variables to these in such a way that
σi = ±1 for the ith element broken/intact. The state of the system is then described by the
configuration of all the elements, σ ≡ (σ1, σ2, . . . , σN). We are interested in how the average
number of intact elements, x̄ = (1 + σ̄ )/2 with σ̄ ≡ N−1 ∑

j σj , evolves in time as well as its
stationary value. The total load on the ith element can be written in the form

ηi = f +
∑

j

Vij

1 + σj

2
, (1)

where f = F/N is the direct load due to the external load and Vij represents the
load transferred from the j th element (in case it is broken). The breaking of the ith
element with threshold hi is determined according to σiEi > 0 with the local field
Ei(σ) ≡ (ηi − hi)(1 − σ̄ )/2. This gives the stationary state at which the system eventually
arrives.

For a more realistic description of the time evolution, we also take into consideration the
uncertainty (noise) present in a real situation, which may arise from imperfections, random
variations and other environmental influences. We thus consider the conditional probability
that the ith element breaks at time t + δt , given that it is intact at time t

p(σi = +1, t + δt | σi = −1, t;σ′, t − td) = δt

2tr
[1 + tanh βE′

i], (2)

where σ′ ≡ (σ ′
1, σ

′
2, . . . , σ

′
N) represents the configuration of the system at time t − td and

E′
i ≡ Ei(σ

′) is the local field at time t − td . Note the two time scales td and tr here: td denotes
the time delay during which the load is redistributed among elements while the refractory
period tr sets the relaxation time (or lifetime). The ‘temperature’ T ≡ β−1 measures the
width of the threshold region of the elements or the noise level: in the noiseless limit (T = 0)
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the factor (1 + tanh βE′
i )/2 in equation (2) reduces to the step function θ(E′

i ), yielding the
stationary-state condition given above. We also assign the non-zero conditional probability of
the ith element being repaired (healed) given that it is broken at time t:5

p(σi = −1, t + δt |σi = +1, t;σ′, t − td) = δt

t0
, (3)

where t0 is the time necessary for repairing. Equations (2) and (3) can be combined to give a
general expression for the conditional probability p(σ ′

i , t + δt |σi, t;σ′, t − td), which, in the
limit δt → 0, can be expressed in terms of the transition rate:

p(−σi, t + δt | σi, t;σ′, t − td) = wi(σi;σ′, t − td)δt. (4)

The transition rate is given by

wi(σi;σ′, t − td) = 1

2tr

[(
a +

1

2

)
+

(
a − 1

2

)
σi +

1 − σi

2
tanh βE′

i

]
, (5)

where the healing parameter a ≡ tr/t0 measures the repairing probability during the relaxation
time. Here we point out that td , tr , t0 and accordingly a may be complicated functions of system
properties like the average fraction of intact elements and others, which may be incorporated
into the model. In this work we restrict ourselves to the simplest case of these parameters
being fixed.

The behavior of the system is then governed by the master equation, which describes
the evolution of the joint probability P(σ, t;σ′, t − td) that the system is in state σ′ at time
t − td and in state σ at time t. In consequence equations describing the time evolution of
relevant physical quantities, with the average taken over P(σ, t;σ′, t − 1), in general assume
the form of differential-difference equations due to the delay in the load redistribution. For
example, one may find the equation of motion for the average fraction of intact elements,
x̄ ≡ (2N)−1 ∑

k(1 − 〈σk〉) ≡ (2N)−1 ∑
k

∑
σ,σ′P(σ, t;σ′, t − 1)(1 − σk), which, in the case

of global load sharing (GLS), leads to the self-consistency equation for the stationary solution
[8, 12].

On the other hand, LLS, which is expected to generate nontrivial spatial correlations
interrelated with temporal ones, does not grant analytical results. We thus resort to MC
simulations, making use of equations (2) and (3). To this end, we place N ≡ L2 elements at
sites of a square lattice of linear size L under periodic boundary conditions. The algorithm
to simulate the load transfer is as follows: (i) initially, all elements are intact, represented by
σi = −1, and subject to equal load f = F/L2. (ii) At each time step, the state of every
element gets updated according to the probability given by equation (2) or (3), depending on
its present state. The order of update is determined at random. (iii) When an element becomes
broken (σi = +1), its load is transferred into the nearest and next nearest neighbors, i.e.,
elements on the 3 × 3 square centered at the broken element. Each intact neighbor receives
an equal amount of the excess load. If there is no intact element on the first (3 × 3) square,
the load is transferred to the intact elements on the second (5 × 5) square, and so on. If there
is no intact element up to the tenth square of linear size 21, the load is shared by all intact
elements in the system, each getting an equal amount. It is obvious that this is just one of the
many possible ways to realize load sharing; we have considered several other realizations of
local load sharing, to find that the behavior of the system does not change qualitatively. (iv)
A healed (repaired) element gets its load from nearby intact elements in a similar manner.
Namely, each intact neighbor chosen gives an equal amount of load to the repaired element,
in such a way that the load on it is equal to the average load of the chosen elements before the

5 Note that in the sandpile model healing is provided by external driving (input), which maintains criticality.
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Figure 1. Average fraction x̄ of intact elements (lower box) and its fluctuations δx̄ (upper box)
versus healing parameter a in the stationary state of a system with LLS, for several values of f at
T = 0.2. Symbols represent data points obtained from MC simulations whereas lines are merely
guides to the eye. Errors are smaller than the symbol sizes.

load transfer. (v) Measuring the average fraction x̄ of intact elements completes the time step,
comprising one MC sweep. (vi) At each time step, the number of newly broken elements is
also counted, from which the breakage rate Rd is computed.

The threshold {hi} is assumed to follow a Gaussian distribution with mean h̄ and standard
deviation σ . Specifically, we set τ ≡ tr/td = 5, h̄ = 1 and σ = 0.2, and use the time step
�t = 0.5 in a system of size L = 512. These parameter values have been varied, only to give
no qualitative difference. Most results of MC simulations presented in this work represent
average values over 30 initial configurations.

Plotted in figure 1 are the average fraction x̄ of intact elements (lower box) and its
fluctuations δx̄ estimated by standard deviations (upper box) versus the healing parameter a
for several values of load f at the noise level T = 0.2. For small values of the load, e.g.,
f = 0.45 in figure 1, one observes an apparently discontinuous transition at a ≈ 0.4; this is to
be contrasted with the case of larger values of f , where x̄ changes continuously with a. These
behaviors are qualitatively the same as those of the system with GLS, where an analytical
approach reveals a bistable region in some range of a, characterized by two stable solutions
of x̄ and an unstable one together with the associated hysteresis [13]. It is thus presumed
that for small f in figure 1 there also exists a bistable region, where the fraction x̄ jumps
from one stable state to the other as the healing parameter a is varied. As f is increased,
the bistable region shrinks and beyond the ‘critical’ load fc, there exists only one state and x̄

changes continuously with a. Note that for f below fc fluctuations grow in the region of the
discontinuous transition, becoming stronger than those for other values of f (compare data
for f = 0.45 with those for f = 0.5 or 0.55 at a � 0.4) although data points shown for the
latter cases are limited; nevertheless, they appear weaker than the fluctuations in the critical
region of the system under f = 0.5.

Here spatial correlations may give rise to a power-law distribution, e.g., in the cluster sizes;
such power-law distributions have also been reported in related models [14]. We therefore
measure the size s of each cluster of broken elements in MC simulations and count the number n
of clusters of size s. By a cluster, we mean a group of elements that are connected as neighbors
in the same (broken) state. Figure 2 shows the obtained cluster size distribution at stationarity
for several values of f and a (a) outside and (b) near the critical region. Power-law distributions
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Figure 2. Cluster size distribution, i.e., number n of clusters of broken elements versus cluster size
s in the stationary state of the system for (a) (f, a) = (0.45, 0.25), (0.50, 0.27) and (0.55, 0.29);
(b) f = 0.5 and a = 0.54, 0.55 and 0.58. While all data in (a) collapse into a single line of the
slope α = 1.9, obtained from the linear regression, in (b) only the data near the critical region
(a ≈ 0.54) exhibit power-law behavior with α = 2.4, represented by the line. The inset in (a)
manifests the power-law behavior of the average cluster size 〈s〉 versus the deviation x̄ − x̄p from
the percolative critical fraction x̄p = 0.415 with the slope γ = 2.2.

of cluster sizes are observed: the number n of clusters of size s satisfies n(s) ∝ s−α . In (a),
data for all three different sets of (f, a) collapse into a single line, disclosing power-law
behavior with the exponent α = 1.9(1). We have also examined the size distribution for other
values of (f, a), to observe that the behavior apparently depends on the average fraction x̄.
Indeed the three sets of (f, a) in figure 2(a) all correspond to x̄ = 0.415 ± 0.005, which,
together with the exponent α ≈ 2, indicates the presence of percolation-type criticality at
x̄p = 0.415. In addition, within error bars the exponent γ = 2.2(2) in the average cluster
size 〈s〉 ≡ ∑

s2n(s)
/∑

sn(s) ∝ |x̄ − x̄p|−γ is also consistent with γ = 43/18 in the site
percolation (see the inset). It is thus believed that the system under weak healing belongs to
the percolation universality class. The difference from the value 1 − pc = 0.407 with the
threshold probability pc = 0.593 in the site percolation reflects correlations between sites
present in our system. On the other hand, figure 2(b) shows that data near the critical region
display power-law behavior with the exponent α = 2.4(1), up to the cutoff due to finite-size
effects. This rather large exponent results from other mechanism than percolation and may
be attributed to SOC-type criticality, since the local rule of LLS sustains the balance between
breakage and healing in that region.

As for the time evolution, while the average fraction x̄ in general decreases from unity
and reaches the stationary state, the breakage rate Rd apparently exhibits complex behavior in
the stationary state, which may be conveniently characterized by its power spectrum. When
healing is weak, the overall power spectrum remains white although a region of power-
law behavior develops at intermediate frequencies (unless a = 0). In contrast, the power-
law behavior of the form P(ω) ∝ ω−φ is most prominent near the critical region of the
discontinuous transition where healing is stronger, as displayed in figure 3 for f = 0.50. It
is observed that the exponent φ reduces as a is increased beyond the critical value ac ≈ 0.54,
where fluctuations are strongest (see figure 1). The large value of φ at ac presumably results
from the increase of the number of available states in the (f, a) parameter space. The system
may then move around among many states via ‘hopping’ with the assistance of noise and induce
collective breakage of many elements, which in turn causes the low-frequency components
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Figure 3. Power spectrum P(ω) of the breakage rate Rd(t) in the stationary state of the same
system as in figure 1 for f = 0.5. The exponent φ is given by 1.7, 1.2, 0.59 and 0.14 for
a = 0.54, 0.55, 0.58 and 0.70, respectively (see the inset).

of the power spectrum to increase. The power-law behavior does not disappear completely
as the load gets somewhat smaller (f = 0.45) or larger (f = 0.55) than the critical load
(not shown), reminiscent of SOC-type criticality without fine tuning. The scale invariance
in the power spectrum may be enhanced by the power law in the cluster size distribution of
broken elements: since the breakage of a larger cluster is an event of lower frequency than that
of a small cluster, the presence of many larger clusters should increase the power spectrum
at smaller frequencies. Recall that healing is not weak in those regions where the power
spectrum displays distinct power-law behavior; this reflects that an adequate amount of input
is required to maintain SOC. This contrasts with the usual case of a phase transition where
power-law behavior appears only at the transition point. On the other hand, the exponent
varies with a and reaches a peak in the critical region (a ≈ ac) where strong fluctuations are
present, indicating that the discontinuous transition comes into play. It is thus concluded that
the criticality in temporal correlations arises from the interplay of the discontinuous transition
and SOC, involved in spatial correlations.
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